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Abstract

Aims: To develop and validate an updated version of KidneyIntelX (kidneyintelX.dkd)

to stratify patients for risk of progression of diabetic kidney disease (DKD) stages 1

to 3, to simplify the test for clinical adoption and support an application to the US

Food and Drug Administration regulatory pathway.

Methods: We used plasma biomarkers and clinical data from the Penn Medicine Bio-

bank (PMBB) for training, and independent cohorts (BioMe and CANVAS) for valida-

tion. The primary outcome was progressive decline in kidney function (PDKF),

defined by a ≥40% sustained decline in estimated glomerular filtration rate or end-

stage kidney disease within 5 years of follow-up.

Results: In 573 PMBB participants with DKD, 15.4% experienced PDKF over a

median of 3.7 years. We trained a random forest model using biomarkers and clinical

variables. Among 657 BioMe participants and 1197 CANVAS participants, 11.7% and

7.5%, respectively, experienced PDKF. Based on training cut-offs, 57%, 35% and 8%

of BioMe participants, and 56%, 38% and 6% of CANVAS participants were classified

as having low-, moderate- and high-risk levels, respectively. The cumulative incidence

at these risk levels was 5.9%, 21.2% and 66.9% in BioMe and 6.7%, 13.1% and 59.6%

in CANVAS. After clinical risk factor adjustment, the adjusted hazard ratios were 7.7

(95% confidence interval [CI] 3.0-19.6) and 3.7 (95% CI 2.0-6.8) in BioMe, and 5.4

(95% CI 2.5-11.9) and 2.3 (95% CI 1.4-3.9) in CANVAS, for high- versus low-risk and

moderate- versus low-risk levels, respectively.

Conclusions: Using two independent cohorts and a clinical trial population, we vali-

dated an updated KidneyIntelX test (named kidneyintelX.dkd), which significantly

enhanced risk stratification in patients with DKD for PDKF, independently from

known risk factors for progression.
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1 | INTRODUCTION

Chronic kidney disease (CKD) is a major cause of morbidity and mor-

tality, affecting nearly 850 million individuals worldwide, including

over 38 million in the United States.1 The leading cause of CKD in the

United States is type 2 diabetes (T2D) and up to 40% of individuals

with T2D have CKD, known as diabetic kidney disease (DKD).2 DKD

is defined by the presence of elevated urinary albumin excretion (uri-

nary albumin-to-creatinine ratio [uACR] ≥30 mg/g) or low estimated

glomerular filtration rate (eGFR; <60 mL/min/1.73 m2) in a person

with T2D.2 The clinical course of DKD is highly variable and includes

fluctuating levels of albuminuria and a progressive loss of kidney func-

tion, represented first as a compensatory increase and then a gradual

lowering in eGFR.3,4

For many patients the disease process, without early intervention,

inevitably progresses to kidney failure, cardiovascular disease, and

death.5 Despite newer kidney-protective medications, only a small pro-

portion of eligible patients are currently on these therapies.6–8 The rea-

sons for this are multifactorial and include a lack of readily available tools

to identify those patients at the highest risk for progression of their kid-

ney disease9 combined with therapeutic inertia, due in part to the pro-

tracted time frame from treatment to an observed individual benefit.

Several blood-based biomarkers reflecting the underlying disease

pathophysiology in DKD have been associated with the risk of a progres-

sive decline in kidney function (PDKF).10–14 Plasma tumour necrosis fac-

tor receptor (TNFR)1 and TNFR2 have been identified at the cellular

level in kidney endothelial cells, podocytes, and renal tubular epithelial

cells. TNFR1 and TNFR2 have been shown to be responsible for the

upregulation of proapoptotic signals. Kidney injury molecule (KIM)-1

gene expression is upregulated in cases of ischaemia, hypoxia and cellular

tubular injury, and has been implicated in biological mechanisms of CKD

in the setting of T2D (eg, activation of phagocytic cells, autophagy, and

immune cellular activation).15 These three biomarkers represent the most

studied plasma proteins for predicting CKD outcomes.11 We have previ-

ously demonstrated that the combination of these three biomarkers with

clinical variables provides effective risk stratification for kidney outcomes

in individuals with T2D and early CKD stages 1 to 3.16,17

In the present study, we sought to optimize and validate an

updated version of the KidneyIntelX test (kidneyintelX.dkd). The

intent was to address specific changes including the removal of race

from the eGFR equation,18,19 and to balance the observed variability

and frequently absent clinical features with the importance of the bio-

markers, while focusing on time-to-event measures of PDKF. Only

contemporary clinical trial biobanks with complete clinical data and

follow-up were used to allow for optimal training and validation of

models and ensure diverse patient generalizability.

2 | METHODS

In this study we analysed three prospectively collected biobanks

linked to clinical data (two observational studies and one randomized

control trial) that comprised geographically, demographically, clinically

and socio-economically diverse adults with T2D and CKD stages 1 to

3. We aimed to train and validate a revised kidneyintelX.dkd model to

predict PDKF within 5 years from baseline. The laboratory assay of

the kidneyintelX.dkd test quantitatively measures K2EDTA plasma

TNFR1, TNFR2 and KIM-1, and combines these measurements with

clinical data to produce a level of risk (low, moderate or high) associ-

ated with PDKF for adult patients with T2D and CKD (ie, DKD). All

patients had T2D and established DKD at baseline, with an eGFR of

30 to 59 mL/min/1.73 m2 or an eGFR ≥60 mL/min/1.73 m2 with

albuminuria (uACR ≥30 mg/g).17,20,21

2.1 | Study populations

2.1.1 | Penn Medicine Biobank

The kidneyintelX.dkd algorithm was derived from the Penn Medicine

Biobank (PMBB). The PMBB is a research cohort enrolled from the

University of Pennsylvania Health System, with recruitment from

2008.17 Participants consented to allow the linkage of biospecimens

with their longitudinal electronic health records (EHRs).

2.1.2 | BioMe

The BioMe biobank is a plasma and DNA biorepository, with recruit-

ment from 2008, which includes consented access to the patients'

EHRs from a diverse local community in New York City.17 The acquisi-

tion of BioMe donor specimens and de-identified medical records

were obtained and approved by institutional review boards for both

the Icahn School of Medicine at Mount Sinai and the University of

Pennsylvania.

Both BioMe and PMBB are institutional biobanks representative

of the outpatient populations of the institutions they serve. Patients

are recruited from outpatient general medicine clinics and certain sub-

specialty clinics with limited preselection criteria.22,23

2.1.3 | CANagliflozin cardioVascular Assessment
Study (CANVAS)

The CANagliflozin cardioVascular Assessment Study (CANVAS) was a

multicentre, double-blinded, placebo-controlled, randomized trial to

assess the effect of canagliflozin on primarily cardiovascular events,

kidney function, and safety outcomes in patients with T2D who had a

history of cardiovascular disease or multiple cardiovascular risk

markers, as previously described.16

2.2 | Eligibility criteria

Adult patients (≥ 21 years old) from all three cohorts with T2D

and a race-free eGFR value between 30 and 59.9 mL/min/1.73 m2
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or an eGFR ≥60 mL/min/1.73 m2 with uACR ≥30 mg/g within

12 months prior to baseline (defined as time of biobank enrolment

in PMBB and BioMe or time of randomization in CANVAS) were

included in the analyses. For the validation cohort, in order to

eliminate the potential for bias, we excluded subjects who were

included in prior validation studies for KidneyIntelX.23 In all cases,

those who did not donate plasma for measurement of biomarkers

(n = 93), or were actively treated with etanercept (due to known

interference with the assay for TNFR2; n = 2) were excluded.

Additional limitations were applied to the BioMe validation popu-

lation to minimize variability from clinical input features and to

best reflect the contemporary clinical status of the patients

(Figure S1).

2.2.1 | Biomarker assays

Biomarker measurements were performed using the banked

K2EDTA plasma specimens derived from whole blood. Methods

followed standard operating procedures within a Renalytix Clinical

Laboratory Improvement Amendments (CLIA)-certified laboratory

in accordance with ISO13485:2016 and US Food and Drug

Administration (FDA) QSR 820 Quality Management System

requirements. The three plasma biomarkers were measured using

a proprietary, analytically validated multiplex MSD assay (Meso

Scale Diagnostics, Gaithersburg, Maryland), which employs elec-

trochemiluminescence detection methods combined with pat-

terned arrays in combination with the MESO SECTOR S 600

instrument.21 Each sample was run in duplicate, along with in-line

quality control samples with known low, moderate and high con-

centrations of each biomarker on each plate. The laboratory per-

sonnel performing the biomarker assays were blinded to all

clinical information.

2.2.2 | Ascertainment and definition of the kidney
endpoint

We determined longitudinal eGFR values post-baseline using the new

race-free CKD-EPI creatinine equation,18 derived from serum creati-

nine, age and gender. The primary composite outcome, PDKF,

included the following: a sustained decline in eGFR of ≥40% from

baseline (defined as individuals who had ≥2 follow-up eGFRs that are

≥3 months apart with ≥40% decrease within 5 years from baseline), or

end-stage kidney disease (defined as individuals who had ≥2 eGFR

measurements of <15 mL/min/1.73 m2 that are ≥30 days apart post

enrolment). Follow-up time was censored after loss to follow-up or

5 years after baseline in PMBB and BioMe. Additional follow-up for

up to 7 years was applied for CANVAS data to allow for more com-

plete ascertainment of sustained outcomes from available eGFR data-

points. The data analysts responsible for ascertainment of the kidney

endpoint in the validation cohorts were blinded to baseline clinical

and biomarker data.

2.2.3 | Model building: training cohort

Model training was completed in a cohort of 573 subjects from the

PMBB who met the intended-use criteria. We considered demo-

graphics, laboratory variables, diagnostic codes, medication use,

and concentrations of the three plasma biomarkers for training of

the model. We used a random forest model and tuned the hyper-

parameters to estimate the 5-year risk for kidney outcome. We cal-

culated the discrimination (c-statistics) and quantified the

prediction model's ability to separate those who experience the

kidney outcome from those who do not. Each incremental model's

accuracy was assessed based on the 10-fold cross validation (70%/

30% random split) to arrive at candidate algorithms comprising dif-

ferent feature sets.

2.2.4 | Hyperparameter determination

We used a standard machine-learning workflow to set hyperpara-

meters. The following hyperparameters along with their description

and values were utilized in the algorithm: (i) number of trees

(n = 100), defined as the number of decision trees in the ensemble; (ii)

node split (n = 2), defined as the number of variables tried at each

split; (iii) terminal node side (n = 2), defined as the minimum number

of observations in a terminal node; and (iv) node depth (n = 2),

defined as the number of splits a tree in the ensemble can make

before coming to a prediction.

The final set of input features included in the algorithm were the

following: plasma TNFR1, plasma TNFR2, plasma KIM-1, baseline

uACR, blood urea nitrogen (BUN) and glycated haemoglobin (HbA1c),

and category cut-offs were defined and fixed prior to validation test-

ing. Those with a predicted probability of ≤0.100 were categorized as

low risk, those with a predicted probability >0.100 and <0.300 were

categorized as moderate risk, and those with a predicted probability

≥0.300 were categorized as high risk.

2.3 | Statistical analyses

We then applied the fixed algorithm to the independent validation

cohorts of BioMe (n = 657) and CANVAS (n = 1197). We applied

cumulative incidence analyses to determine the failure estimates for

the outcome for each of the kidneyintelX.dkd test risk categories to

account for censoring during the 5-year observation period. Propor-

tional hazards assumptions were tested. Unadjusted and adjusted

Cox proportional hazard models were applied to show the relative

hazard of patients experiencing PDKF by kidneyintelX.dkd levels

(high vs. low and moderate vs. low) over a 5-year period, with adjust-

ment for well-known risk factors (age, gender, race, and baseline

eGFR, uACR, systolic blood pressure, HbA1c). We then assessed cal-

ibration (predicted vs. actual risk) in all the validation cohorts using

the Brier scores to assess concordance between predicted and actual

risk. The Brier score is a scoring rule that measures the accuracy of

NADKARNI ET AL. 3
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probabilistic predictions. The scores range from 0 to 1 and the lower

the Brier score for a set of predictions, the better the predictions are

calibrated. Finally, in exploratory analyses, we assessed the median

eGFR slope per kidneyintelX.dkd risk category using mixed linear

models and examined the performance of kidneyintelX.dkd by sub-

groups of age, race, CKD stage, and period of enrolment into the

biobank.

For the BioMe validation cohort, all statistical analyses were

performed by independent statisticians (Advance Research Associ-

ates, Inc., California) according to a prespecified plan. To ensure

study results were not subject to potential bias, blinding proce-

dures were followed throughout the study. The estimated absolute

event rate for sample size calculations was assumed for high-risk

level >30% and for low-risk level <7.5%, and for prespecified target

difference in event rates observed between the kidneyintelX.dkd

levels.

3 | RESULTS

3.1 | Population characteristics

Baseline characteristics for study participants are summarized in

Table S1. In the PMBB cohort, there were 573 participants; the mean

(SD) age was 62 (10) years and 43% were women. The mean (SD)

eGFR was 58 (20) mL/min/1.73 m2 and the median (interquartile

range [IQR]) uACR was 54 (14-221) mg/g. In the BioMe cohort, 657

participants were included in the analysis based on prespecified inclu-

sion/exclusion criteria; the mean (SD) age was 70 (11) years and 57%

were women. The mean (SD) eGFR was 64 (22) mL/min/1.73 m2 and

the median (IQR) uACR was 52 (20-214) mg/g. Finally, in the CANVAS

cohort there were 1197 participants with DKD at the time of random-

ization, all meeting the inclusion criteria based on baseline eGFR and

uACR; the mean (SD) age was 64 (8) years and 31% were women. The

mean (SD) eGFR was 75 (21) mL/min/1.73 m2 and the median (IQR)

uACR was 65 (34-189) mg/g.

3.2 | Model training

Over a median follow-up period of 3.2 years, there were 88 com-

posite kidney events in the PMBB cohort. Using random forest

optimization and hyperparameter tuning as described in the

methods to derive the prediction model, the following variables

were retained as independent risk factors for the composite kid-

ney outcome in the PMBB cohort: plasma TNFR1, plasma TNFR2,

plasma KIM-1, baseline uACR, BUN and HbA1c. In addition to

their contribution as independent risk factors, the clinical fea-

tures selected are all clinically relevant to the intended use and

therefore contribute to generalizability to broad populations.

The relative importance of each feature is shown in Figure S2.

The c-statistic of the model for the discrimination of the kidney

outcome was 0.83.

3.3 | Performance of the risk prediction model for
the kidney outcome in the validation cohort (BioMe)

Over a median follow-up period of 1385 days, there were 77 compos-

ite kidney events in BioMe. The locked model derived from PMBB and

applied to the BioMe population scored 57% of the participants as

low risk, 35% as moderate risk, and 8% as high risk. The cumulative

incidence probabilities in the low-, moderate- and high-risk levels

were 6%, 21% and 67%, respectively (Figure 1B and Table 1). The

unadjusted hazard ratio (HR) for the kidney outcome was 18.3 (95%

CI 9.7-34.6) for high versus low risk and 4.2 (95% CI 2.4-7.4) for mod-

erate versus low risk. After adjustment for age, gender, race and base-

line eGFR, uACR, systolic blood pressure and HbA1c, the adjusted

HRs were 7.7 (95% CI 3.0-19.6) and 3.7 (95% CI 2.0-6.8), respectively

(Table S2 and Figure 2). The magnitude of associations was consistent

across key subgroups (Figure S3). The eGFR slopes for the low-, mod-

erate- and high-risk levels were �0.91, �1.80 and �3.69 mL/min/

1.73 m2 per year, respectively (ANOVA test, P < 0.001; Table S3 and

Figure 3).

3.4 | Performance of the risk prediction model for
the kidney outcome in CANVAS

Over a median follow-up period of 6.1 years (73.4 months,

n = 1197) there were 90 (7.5%) composite kidney events in those

with baseline CKD G1 to G3b in CANVAS (n = 1197). The kid-

neyintelX.dkd model, derived from PMBB, scored 56% of the par-

ticipants as low risk, 38% as moderate risk and 6% as high risk

(Table 1). The cumulative incidence probabilities in the low-, mod-

erate- and high-risk levels were 6.7%, 13.1% and 59.6%, respec-

tively (Figure 1C and Table 1). The unadjusted HR for the kidney

outcome was 13.8 (95% CI 7.9-24) for high versus low risk and

2.6 (95% CI 1.5-4.2) for moderate versus low risk. After adjust-

ment for age, gender, race and baseline eGFR, uACR, systolic

blood pressure and HbA1c, the HR for the kidney outcome was

5.4 (95% CI 2.5-11.9) in the high- versus low-risk levels and 2.3

(95% CI 1.2-4.4) in the moderate- versus low-risk levels (Table S3

and Figure 2). The eGFR slopes for low-, moderate- and high-risk

levels were � 0.23, �0.60 and � 2.05 mL/min/1.73 m2 per year,

respectively (ANOVA test, P < 0.001; Table S3 and Figure 3). The

absolute magnitudes of the eGFR slopes by risk category were

more pronounced in the placebo group compared to the canagli-

flozin-treated group (�0.61, �0.95 and �3.45 vs. �0.04, �0.43

and �1.35 mL/min/1.73 m2, respectively).

3.4.1 | Calibration in the validation cohorts

Brier scores were calculated in the validation cohorts (Table S4). The

results demonstrated that the kidneyintelX.dkd model was well cali-

brated across the validation cohorts, with good concordance between

the predicted and actual risks (Figures S4 and S5).
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3.5 | Supplementary analyses

We performed simulations to evaluate the generalizability of the per-

formance of kidneyintelX.dkd to patients tested from a wide variety

of health settings. All input variables for all participants in the clinical

validation cohort (n = 657) were simultaneously and randomly varied

based on the measured or expected precision profile for each feature

(n = 100) for a total of 65 700 simulations. The ranges chosen for the

TABLE 1 Comparison of the performance characteristics across the three cohorts

kidneyIntelX.dkd level

Number of subjectsa n (%)
Cumulative incidence probability accelerated PDKF over 5 years (PMBB, BioMe)
uncensored data of CANVAS, % (95% CI)

PMBB BioMe CANVAS PMBB BioMe CANVAS

Low 289 (50.4) 374 (56.9) 666 (55.6) 5.6 (2.7–11.3) 5.9 (3.6–9.4) 6.7 (3.2–10.0)

Moderate 227 (39.6) 228 (34.7) 456 (38.1) 30.5 (22.7–40.1) 21.2% (15.6–28.3) 13.1 (8.4–17.6)

High 57 (10.0) 55 (8.4) 75 (6.3) 84.9 (70.0–96.1) 66.9% (49.3–83.5) 59.6 (33.9–75.3)

Abbreviations: CI, confidence interval; PDKF, progressive decline in kidney function; PMBB, Penn Medicine Biobank.
aGroup sizes by the three risk levels in the validation cohorts determined by application of the predicted probabilities of ≤0.100 (low risk), >0.100

and <0.300 (moderate risk) and ≥0.300 (high risk).

F IGURE 2 Unadjusted (A) and
adjusted (B) hazard ratios by kidneyintelX.
dkd level in BioMe and CANVAS.
Adjusted hazard ratios (compared to low-
risk level) derived from Cox proportional
hazard models with kidneyintelX.dkd
levels adjusting for age, gender, race, and
baseline estimated glomerular filtration
rate, urinary albumin-to-creatinine ratio,
systolic blood pressure and glycated
haemoglobin.
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three biomarkers were based on imprecision studies performed at

Renalytix. For the clinical features (uACR, HbA1c and BUN), data from

published proficiency testing and from decision summaries from FDA-

cleared devices were applied to reflect the expected imprecision in

these features. The maximum level of re-categorization in the pres-

ence of this level of imprecision in the input features was 5.1% across

all simulations for all risk categories, with no subjects moving by more

than one kidneyintelX.dkd category (ie, high to low or low to high;

Table S5) The robustness of the kidneyintelX.dkd result was further

demonstrated by increasing the imprecision of the clinical features

(uACR to 40%, HbA1c to 6% and BUN to 14%) based on reported

College of American Pathologists survey data and some published lit-

erature for uACR intra-individual variability. The results showed a

marginal increase in the overall classification rate (3.9%), with no

change in the median coefficient of variation (1.1%; IQR 0.5%, 2.9%)

across 100 simulations for each of the 657 participants.

We further performed sensitivity analysis to assess performance

across multiple subgroups in the BioMe validation population based

on age, gender, race, baseline eGFR range, and period of enrolment in

the BioMe biobank (reflecting temporal patterns of clinical care). kid-

neyintelX.dkd performance in risk event stratification of low-, moder-

ate- and high-risk patients was consistent across all subgroups.

4 | DISCUSSION

There are over 12 million individuals in the United States with DKD, but

only a small proportion will experience progression over a multi-year

timeframe.5 With limited resources and healthcare services, it is critical

to identify patients who have a higher risk of progression. Interventions,

including novel kidney and cardioprotective medications, multi-drug

combinations and specialist referral, can then be prioritized for these

high-risk individuals to decrease the overall burden of advanced-stage

kidney disease. However, current methods are inadequate to address

this gap in knowledge. In response, we previously developed and vali-

dated the KidneyIntelX test, combining novel biomarkers and clinical risk

factors.17 Due to contemporary changes in clinical management, we

further developed and then validated an updated version of KidneyIn-

telX, supporting a de novo marketing authorization from the FDA for the

test, named kidneyintelX.dkd (DEN200052).

kidneyintelX.dkd is designed to be straightforward to implement

and interpret in clinical practice, and has been shown to be generaliz-

able to broad, diverse populations. The base performance of kidneyin-

telX.dkd is similar to that of KidneyIntelX,17 the unadjusted HR for

kidneyintelX.dkd high versus low risk was 18 for BioMe and 14 for

CANVAS, with cumulative incidence probabilities in the high-risk level

that were 60% or greater. The gradients of risk between high- and

low-risk strata were consistent in both validation cohorts despite dif-

ferences in baseline eGFR, with that in CANVAS being significantly

higher (adjusted HRs of 8 and 5 in BioMe and CANVAS for high vs.

low risk, respectively). Importantly, the models were well calibrated

across the independent external validation cohorts, and moreover,

through extensive simulation and sensitivity testing, kidneyintelX.dkd

was shown to be robust against large variations in the standard clinical

variables used in the model, and prognostic performance was consis-

tent across patient subgroups. The ability to risk-stratify a large popu-

lation of patients with DKD for such an important clinical outcome

has the potential to result in significant clinical decisions and actions

at both ends of the risk spectrum. For high-risk patients there is an

opportunity to change and conceivably slow the current trajectory of

PDKF through consult services and novel therapies, while low-risk

patients could avoid polypharmacy and promote continued weight

loss programmes and effective diabetes care. Indeed, those scored as

low risk in the cohorts had an absolute risk of progression of approxi-

mately 5% over 5 years, with eGFR declines approximately equal to the

rate due to normal aging, which are compelling datapoints to avoid

aggressive care in those at low risk. Inclusion of time-to-event out-

comes ensures that clinicians are provided with performance informa-

tion to support the interpretation of test results. We performed

additional analyses on KidneyIntelX which have demonstrated that cost

savings are derived from deployment of KidneyIntelX testing for a large

population of patients with DKD, compared to the standard of care.24

This work should be interpreted in the light of some limitations.

First, we did not perform an a priori sample size determination for the

F IGURE 3 Annual rate of decline in
estimated glomerular filtration rate (eGFR)
by kidneyintelX.dkd risk level in BioMe
and CANVAS derivation and validation
cohorts. Data shown are the mean annual
change in eGFR along with standard
deviations.
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derivation cohort. However, for the validation cohorts, we empirically

demonstrate a sufficient sample size to show risk difference between

the high- and low-risk groups. Second, eGFR was not a final feature in

the kidneyintelX.dkd model which may seem counterintuitive for a

test to predict kidney function decline. We included both eGFR and

BUN concentration, a surrogate measure of kidney function, in con-

secutive models and, when used in the composite kidneyintelX.dkd

models, BUN contributed more to prediction of eGFR decline than

eGFR itself. Third, we only required a single measurement of uACR

for inclusion, however, usually two or more are needed for definitive

diagnosis. Fourth, we did not adjust for diabetes duration, antihyper-

tensive drug use or smoking in the fully adjusted models as these

parameters are not captured accurately or routinely in patient health

records. Finally, the overall event rate in CANVAS was lower than that

in the two observational cohorts, which limited the absolute cumula-

tive incidence probability in the high-risk group in CANVAS. However,

this was expected for three reasons: (i) clinical trial population (selec-

tion bias); (ii) treatment effect 2:1 randomization to the very effective

sodium-glucose cotransporter-2 inhibitor canagliflozin; (iii) only once-

yearly ascertainment of eGFR, which limits association with outcome.

In conclusion, an updated version of the prior KidneyIntelX test,

named kidneyintelX.dkd, was trained and validated in two contempo-

rary cohorts. The assay demonstrated excellent prognostic perfor-

mance for PDKF, independent of key demographics and clinical

variables, with wide-ranging analytical stability, and consistent risk

discrimination in the intended-use population of DKD overall, as well

across key subgroups.
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