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Abstract
Aim Predicting progression in diabetic kidney disease (DKD) is critical to improving outcomes. We sought to develop/validate a
machine-learned, prognostic risk score (KidneyIntelX™) combining electronic health records (EHR) and biomarkers.
Methods This is an observational cohort study of patients with prevalent DKD/banked plasma from two EHR-linked biobanks.
A random forest model was trained, and performance (AUC, positive and negative predictive values [PPV/NPV], and net
reclassification index [NRI]) was compared with that of a clinical model and Kidney Disease: Improving Global Outcomes
(KDIGO) categories for predicting a composite outcome of eGFR decline of ≥5 ml/min per year, ≥40% sustained decline, or
kidney failure within 5 years.
Results In 1146 patients, the median age was 63 years, 51% were female, the baseline eGFR was 54 ml min−1 [1.73 m]−2, the
urine albumin to creatinine ratio (uACR) was 6.9 mg/mmol, follow-up was 4.3 years and 21% had the composite endpoint. On
cross-validation in derivation (n = 686), KidneyIntelX had anAUC of 0.77 (95%CI 0.74, 0.79). In validation (n = 460), the AUC
was 0.77 (95% CI 0.76, 0.79). By comparison, the AUC for the clinical model was 0.62 (95% CI 0.61, 0.63) in derivation and
0.61 (95% CI 0.60, 0.63) in validation. Using derivation cut-offs, KidneyIntelX stratified 46%, 37% and 17% of the validation
cohort into low-, intermediate- and high-risk groups for the composite kidney endpoint, respectively. The PPV for progressive
decline in kidney function in the high-risk group was 61% for KidneyIntelX vs 40% for the highest risk strata by KDIGO
categorisation (p < 0.001). Only 10% of those scored as low risk by KidneyIntelX experienced progression (i.e., NPV of 90%).
The NRIevent for the high-risk group was 41% (p < 0.05).
Conclusions KidneyIntelX improved prediction of kidney outcomes over KDIGO and clinical models in individuals with early
stages of DKD.
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KIM-1 Kidney injury molecule-1
NHANES National Health and Nutrition Examination

Survey
NPV Negative predictive values
NRI Net reclassification index
PMBB Penn Medicine Biobank
PPV Positive predictive values
RKFD Rapid kidney function decline
TNFR1/2 TNF receptors 1/2
uACR Urinary albumin creatinine ratio

Introduction

Approximately one out of four adults with type 2 diabetes
mellitus has kidney disease (i.e., diabetic kidney disease
[DKD]). Each year, 50,000 individuals with DKD progress
to kidney failure in the United States [1]. The Mount Sinai
Health System alone provides care for over 70,000 patients
with DKD. Measurements of eGFR and urinary albumin
creatinine ratio (uACR) have been incorporated into the
Kidney Disease: Improving Global Outcomes (KDIGO)
guidelines for risk stratification [2], but these cannot precisely

identify patients who will experience rapid kidney function
decline (RKFD) [3]. As a result, primary care physicians and
diabetologists are not able to appropriately risk stratify and
counsel patients on the progressive nature of DKD. Easily
interpretable and accurate prognostic tools that integrate into
clinical workflow are lacking, resulting in suboptimal treat-
ment and delays in referral to a nephrology specialist. This has
led, in part, to the unacceptable burden of progressive DKD
and kidney failure [4–8] with a high proportion of patients
starting unplanned dialysis [1, 9, 10].

Several blood-based biomarkers have shown associations
with DKD progression, most significantly soluble TNF recep-
tors 1/2 (TNFR1/2) and plasma kidney injury molecule-1
(KIM-1) [11, 12]. However, accurate prognostic models that
combine clinical data from patients’ electronic health records
(EHR) with blood-based biomarkers have not been imple-
mented. Although EHR data are widely available, its volume
and complexity limits integration with biomarker values using
traditional methodologies. Machine learning can combine
biomarkers and EHR data to produce prognostic risk scores.
We previously demonstrated that combining biomarkers and
EHR data in patients with type 2 diabetes and APOL-1 high-
risk genotype improved prediction of kidney outcomes over
clinical models [13]. A simple risk score that improves the
ability to identify patients with DKD at low, intermediate,
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and high risk of progressive decline in kidney function has the
potential to improve outcomes through more effective use of
medications and efficient resource allocation at the primary
care physician level.

In this study, we sought to develop and validate the perfor-
mance of a new biomarker-enriched, machine-learned risk
score (the KidneyIntelX™ test) to predict progressive decline
in kidney function in patients with early-stage DKD and
compare the performance with standard clinical models. We
also determined risk-based thresholds that can easily be inte-
grated into standard clinical workflows and enhance existing
clinical practice guidelines.

Methods

Study sample Samples were from the BioMe Biobank at the
Icahn School of Medicine at Mount Sinai and the Penn
Medicine Biobank (PMBB). The BioMe Biobank is a
biorepository of plasma and DNA collected from 2007 from
individuals in a diverse local community in New York City.
Informed consent for access to the patients’ EHR is also
included [14, 15]. PMBB is a biobank of blood and tissue
samples taken from a research cohort recruited via the
University of Pennsylvania Health System from 2008 [14].
Participants gave consent for their biospecimens to be linked
with their longitudinal EHR (electronic supplementary
material [ESM] Fig. 1). Both BioMe and PMBB are institu-
tional biobanks that attempt to be representative of the patient
populations of the institutions they serve. Patients are recruit-
ed from outpatient general medicine clinics and certain
subspecialty clinics with limited pre-selection criteria [16, 17].

The study protocol was approved by each institution’s
review board; all participants had provided written informed
consent to participate in research and were not specifically
compensated for participation in the current study. Blood
was collected on the day of enrolment into BioMe or PMBB
and plasma was isolated as per standard procedures and
continuously stored at −80°C until shipping to the
RenalytixAI laboratory, USA where biomarkers were
measured.

Inclusion criteriaWe selected patients fromBioMe and PMBB
who were 21–81 years at the time of biobank enrolment
(‘baseline’), with type 2 diabetes, an eGFR between 30 and
59.9 ml min−1 [1.73 m]2 or an eGFR ≥60 ml min−1 [1.73 m]2

with uACR ≥3 mg/mmol. The KDIGO risk model categorises
patients based on eGFR and albuminuria and has three colours
that correspond to the prognosis of prevalent CKD (we did not
include patients at ‘low risk’ or green because they do not
have CKD) [2]. Patients were included if, by the KDIGO
eGFR and uACR criteria, they were stage G3a–G3b with all
grades of albuminuria (A1–A3) and stage G1–G2 with

moderate to high albuminuria (uACR ≥30 mg/g [A2–A3])
[2]. The proportion of each DKD stage was evaluated against
national estimates derived from the National Health and
Nutrition Examination Survey (NHANES) 2018–2019 [18].
For eGFR, we defined the baseline period as 1 year before or
up to 3 months after biobank enrolment. Baseline uACR
values were derived from closest values ±1 year from enrol-
ment to maximise sample size as these are measured less
frequently; participants without baseline values of eGFR and
uACR meeting these criteria were excluded. Only individuals
with a stored plasma specimen, a minimum follow-up time
from enrolment of at least 21 months, at least three eGFR
values after baseline (ESM Fig. 1) were included.
Individuals with kidney transplants or on chronic maintenance
dialysis before baseline were excluded from the study.

Ascertainment of clinical variables Data on sex and race were
obtained from the BioMe and PMBB biobanks or from EHR
data. Clinical data were extracted for all EHR variables with
concordant time stamps. Hypertension and type 2 diabetes
status at baseline were determined using the eMERGE
Network phenotyping algorithms [16]. CVD and heart failure
were determined by ICD-9/10 clinical modification codes.

Biomarker assays The three plasma biomarkers were
measured in a proprietary, analytically validated multiplex
format using the Mesoscale platform (MesoScale
Diagnostics, Gaithersburg, Maryland, USA), which employs
electrochemiluminescence detection methods combined with
patterned arrays to multiplex assays. Each sample was run in
duplicate, along with quality control samples with known low,
moderate and high concentrations of each biomarker on each
plate. Assay precision was assessed using a reference panel of
seven samples that spanned the measurement range. Intra-
assays for KIM-1, TNFR1 and TNFR2 gave mean CV values
of 3.9%, 5.4%, and 3.7%, respectively. Inter-assays for KIM-
1, TNFR-I, and TNFR-2 reference samples gave mean CV
values of 9.9%, 10.1%, and 7.8%, respectively. Assays satis-
fied dilution linearity and were run at 1:4 dilution. Levey–
Jennings plots were employed and followed the Westgard
rules for re-run of samples. The laboratory personnel
performing the biomarker assays were blinded to all clinical
information.

Data harmonisation We harmonised data from BioMe and
PMBB biobanks. Race/ethnicity was collapsed into four
major, non-overlapping categories (White, Non-Hispanic
Black, Hispanic, and other). ICD and Current Procedural
Terminology (CPT) codes were included as yes/no variables
with timestamps. Medications (including metformin, insulin,
sulfonylureas, etc. that were prescribed before the baseline
data) were mapped to RxNorm codes [19] and laboratory
values to Logical Observation Identifiers Names and Codes
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(LOINC) codes [20]. Only variables represented in >70% of
participants throughout the combined dataset (except uACR
and BP because of their established clinical importance) were
included and used to train the KidneyIntelX algorithm.

Ascertainment and definition of the kidney endpoint We
determined eGFR using the CKD-EPI creatinine equation
[21]. We employed linear mixed models with an unstructured
variance-covariance matrix and random intercept/slope for
each individual to estimate the eGFR slope [22]. The primary
composite outcome, progressive decline in kidney function,
included the following: RKFD defined as an eGFR slope
decline of ≥5 ml min−1 [1.73 m]−2 per year [2], a sustained
(confirmed at least 3 months later) decline in eGFR of ≥40%
[23] from baseline, or ‘kidney failure’ defined by sustained
eGFR <15 ml min−1 [1.73 m]−2 confirmed at least 30 days
later, or receipt of long-termmaintenance dialysis or receipt of
a kidney transplant [2]. Additionally, two nephrologists (SC,
GNN) independently adjudicated all outcomes examining
each individual over their longitudinal course, accounting
for eGFR changes (ensuring annualised decline of ≥5 ml/
min or ≥40% sustained decrease), corresponding ICD/CPT
codes and medications to ensure that outcomes represented
true decline rather than a context dependent temporary change
(e.g., due to medications/hospitalisations). Follow-up time
was censored after loss to follow-up, after the date that the
non-slope components of the composite kidney endpoint were
met, or 5 years after baseline.

Statistical analysis The datasets were randomised into deriva-
tion (60%) and validation sets (40%). The validation dataset
was completely blinded and sequestered from the total deri-
vation dataset. Using only the derivation set, we evaluated
supervised random forest algorithms on the combined
biomarker and all structured EHR features without a priori
feature selection and identified a candidate feature set using
grid search; ESM Table 1. The derivation set was then
randomly split into secondary training and test sets for model
optimisation with 70%–30% spitting and a tenfold cross-
validation for AUC.We considered both raw values and ratios
of the biomarkers. Missing uACR values were imputed to
1.1 mg/mmol [24], missing BP values were imputed using
multiple predictors (age, sex, race and antihypertensive medi-
cations) [25], and median values were used for other features
where missingness was <30% (ESM Table 2).

We conducted further iterations of the model by tuning the
individual hyperparameters. A hyperparameter is a parameter
that is used to control the learning process (e.g., number of
random forest trees) as opposed to parameters whose weights
are learned during the training (e.g., weight of a variable).
Tuning hyperparameters refers to iteration of model architec-
ture after setting parameter weights to achieve the ideal perfor-
mance. Hyperparameters were optimised using the grid search

approach. K-fold cross-validation-based AUC was evaluated
for all possible combinations of hyperparameters. We selected
the combination of hyperparameters that optimised the AUC
for model building. The following hyperparameters were
considered for optimisation.

& Number of variables randomly selected as candidates for
splitting a node

& Mean forest number of unique cases (data points) in a
terminal node

& Maximum depth to which a tree should be grown

The code for hyperparameter optimisation has been depos-
ited in a github repository (https://github.com/girish-nadkarni/
KidneyIntelX_hyperparameter_tuning) to improve
reproducibility and transparency. The final model was
selected based on AUC performance.

We generated risk probabilities for the composite kidney
endpoint using the final model in the derivation set, scaled
them to align with a continuous score from 5 to 100 by incre-
ments of 5, and applied this score to the validation set. Risk
cut-offs were chosen in the derivation set to encompass the top
15% as the high-risk (scores 90–100), bottom 45% as the low-
risk (scores 5–45), and the intervening 40% as the
intermediate-risk group (scores 50–85). Primary performance
criteria were AUC, positive predictive value (PPV) for high-
risk group and negative predictive value (NPV) for low-risk
group at the pre-determined cut-offs. The selected model and
associated cut-offs were then validated by an independent
biostatistician (MK) in the sequestered validation cohort.

In addition to these traditional test statistics, we
assessed calibration by examining the slope of observed
vs expected outcome plots of the KidneyIntelX score vs
only the observed outcomes. We also constructed
Kaplan–Meier curves for time-dependent outcomes of
40% decline and kidney failure with HRs using the
Cox proportional hazards method.

The discrimination of the KidneyIntelX model was
compared with a recently validated comprehensive clinical
model that included age, sex, race, eGFR, CVD, smoking,
hypertension, BMI, uACR, insulin, diabetes medications,
and HbA1c and was developed to predict 40% eGFR decline
in individuals with type 2 diabetes [24]. Utility metrics (PPV,
NPV) were compared with both the comprehensive clinical
model and KDIGO risk strata. We also calculated the net
reclassification index (NRI) for events and non-events
compared with KDIGO risk strata [26, 27]. Finally, we
compared the validated KidneyIntelX model with a logistic
regressionmodel incorporating the features found to be signif-
icantly driving the outcome. All a priori levels of significance
were <0.05. All hypothesis tests were two-sided. 95% confi-
dence intervals were calculated by bootstrapping. All analyses
were performed with R software (www.rproject.org), the

1507Diabetologia  (2021) 64:1504–1515

https://github.com/girish-nadkarni/KidneyIntelX_hyperparameter_tuning
https://github.com/girish-nadkarni/KidneyIntelX_hyperparameter_tuning
http://www.rproject.org


dplyr package, the randomForestSRC and the CARET
package [28, 29].

Results

Baseline characteristics of cohorts Baseline characteristics of
the total study cohort (n = 1146) were as follows: median age
63 years, 581 (51%) female, median eGFR 54 ml min−1

[1.73 m]−2, and median uACR 6.9 mg/mmol. uACR was

available in 62% of the cohort and imputed to 1.1 mg/mmol
in 38%. The most common comorbidities were hypertension
(91%), CAD (35%), and heart failure (33%). The majority
(81%) were on ACE inhibitors or angiotensin receptor
blockers. Baseline characteristics between derivation and vali-
dation sets including event rates were balanced. The median
number of serum creatinine/eGFR values per participant
during the follow-up period was 16 (Table 1). The distribution
of DKD stages of the study cohort is similar to national esti-
mates based on NHANES (ESM Table 3).

Table 1 Clinical characteristics of the participants in the derivation and validation cohorts

Study population
n=1146

Derivation population
n=686

Validation population
n=460

Clinical characteristics
Age in years, median [Q1–Q3] 63 [55–69] 63 [55–68] 63 [56–69]
Female, n (%) 581 (50.7) 352 (51.3) 229 (49.8)
Race, n (%)

White 373 (32.6) 231 (33.7) 142 (30.9)
African American 386 (33.7) 226 (32.9) 160 (34.8)
Other 387 (33.8) 229 (33.4) 158 (34)

BMI, median [Q1–Q3] 31 [29–35] 31 [29–35] 31 [29–36]
Hypertension, n (%) 1043 (91.0) 622 (90.7) 421 (91.5)
CAD, n (%) 406 (35.4) 234 (34.1) 172 (37.4)
Heart failure, n (%) 378 (33) 213 (31.1) 165 (35.9)
Systolic BP (mmHg) 130 [120–144] 130 [119–144] 130 [120–144]
Diastolic BP (mmHg) 74 [67–81] 74 [66–81] 73 [67–80]
Follow-up (months), median [Q1–Q3] 51.9 [36.5–58.1] 51.3 [36.8–58.1] 52.8 [35.9–58.1]

Laboratory characteristics
eGFR (ml min−1 [1.73 m]−2)
Baseline, median [Q1–Q3] 54.3 [45.3–67.3] 54.4 [44.4–68.4] 54.1 [45.7–66.1]
30–44.9, n (%) 279 (24.4) 176 (25.7) 103 (22.4)
45–59.9, n (%) 490 (42.8) 275 (40.1) 215 (46.7)
60–89.9, n (%) 263 (22.9) 170 (24.8) 93 (20.2)
≥90, n (%) 114 (9.9) 65 (9.5) 49 (10.7)

uACR (mg/mmol)
Baseline, median [Q1–Q3] 6.9 [1.8–27.2] 7.4 [2–26.9] 6.1 [1.7–27.8]
Missing, n (%) 433 (37.8) 269 (39.2) 164 (35.7)

Baseline HbA1c, median [Q1–Q3]
mmol/mol 51.9 [44.3–66.1] 53 [44.3–66.3] 51.9 [44.3–66.1]
% 6.9 [6.2–8.2] 7 [6.2–8.22] 6.9 [6.2–8.2]

Medication
ACEi/ARB, n (%) 926 (80.8) 560 (81.6) 366 (79.6)

Plasma biomarkers (pg/ml), median [Q1–Q3]
TNFR1 2807 [2192–3830] 2807 [2191–3830] 2924 [2217–3894]
TNFR2 11,090 [8031–14,984] 11,090 [8031–14,984] 11,171 [8302–15,046]
KIM-1 124 [76–235] 124 [76–235] 138 [82–253]

Smoking status, n (%)
Never 354 (30.9) 214 (31.2) 140 (30.4)
Ever 503 (43.9) 298 (43.4) 205 (44.6)
Missing 289 (25.2) 174 (25.4) 115 (25)

Events
eGFR slope≥5 ml min−1 [1.73 m]−2 per year, n (%) 171 (14.9) 98 (14.3) 73 (15.9)
Sustained 40% decline in eGFR, n (%)a 179 (15.6) 103 (15) 76 (16.5)
Kidney failure, n (%)b 52 (4.5) 29 (4.2) 23 (5)
Composite endpoint, n (%)c 241 (21) 137 (20) 104 (22.6)

a Confirmed at least 3 months later. Defined as a decline in eGFR of ≥40% from baseline
bDefined by sustained eGFR <15 confirmed at least 30 days later, or receipt of long-term maintenance dialysis or receipt of a kidney transplant
c Defined as progressive decline in kidney function defined by any of the following: eGFR slope ≥ 5 ml min−1 [1.73 m]−2 per year or sustained 40%
decline in eGFR or kidney failure

ACEi, ACE inhibitor; ARB, angiotensin receptor blocker; CAD, coronary artery disease
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Prediction of the composite kidney endpoint (progressive
decline in kidney function) Overall, 241 patients (21%) expe-
rienced progressive decline in kidney function over a median
4.3 (IQR 3.0–4.8) years. In the complete derivation set (n =
686), using tenfold cross-validation for discrimination, the
mean AUC for the KidneyIntelX model was 0.77 (95% CI 0.74,
0.79). The most significant data features contributing to perfor-
mance of the KidneyIntelX model included the three plasma
biomarkers (TNFR1, TNFR2 and KIM1, as discrete values and
ratios), eGFR, uACR, and systolic BP (Fig. 1). This final model
had anAUC of 0.77 (95%CI 0.76, 0.79) in the validation set (n=
460). The risk for the composite kidney event increased by
predicted probabilities of the KidneyIntelX score (Fig. 2a and
b) and by the KidneyIntelX score (Fig. 2c). The slope of the
observed vs the predicted risk for KidneyIntelX was 0.8 in the
training set and 1.0 in the validation set, indicating good calibra-
tion (ESM Fig. 2). By comparison, the comprehensive clinical
model yielded an AUC of 0.62 (95% CI 0.61, 0.63) in the full
derivation set (n = 686) and 0.61 (95% CI 0.60, 0.63) in valida-
tion set (n= 460; Delong p value for KidneyIntelX vs clinical
model <0.001).

KidneyIntelX clinical utility cut-off points The risk probability
cut-offs of KidneyIntelX selected in the derivation set (n =
686) were 0.061 for the lowest 45% of patients and 0.302
for the top 15% of patients. When these risk cut-offs were
applied to the complete validation set, with imputed uACR
for missing values (n = 460), KidneyIntelX stratified patients
to low- (46%), intermediate- (37%) and high-risk (17%)
groups with respective probabilities for the composite kidney
endpoint of 0.10, 0.22 and 0.61. When the optimised clinical
model was applied to the validation set, the respective proba-
bilities for the composite kidney endpoint were 0.171 for the

bottom 46% of the population and 0.319 for the top 17%.
Thus, the PPV for the composite kidney endpoint was 61%
in the KidneyIntelX high-risk group compared with a PPV of
37% for the comprehensive clinical model (p < 0.001;
Table 2). The NPV for the composite kidney endpoint in the
KidneyIntelX low-risk group was 90% compared with an
NPV of 88% for the comprehensive clinical model (p =
0.33). The distribution of patients into KDIGO risk categories
was established using 296 participants (64%) with uACR
available in the validation cohort and stratified the population
into ‘moderately increased risk’ (53%), ‘high risk’ (31%) and
‘very high risk’ (16%) with respective probabilities of 0.15,
0.29 and 0.40 for the composite kidney endpoint over 5 years.
In the subgroup with non-imputed uACR (n = 296), the PPV
for the high-risk strata of KidneyIntelX was 69% (compared
with 40% for KDIGO ‘very high’ risk) and the NPV for the
low-risk strata of KidneyIntelX was 93% (compared with
85% for KDIGO ‘moderately increased’ risk; ESM Table 4).

KidneyIntelX scores correctly classified more cases into
the appropriate risk strata (NRIevent = 55% in the derivation
set and 41% in the validation set, p < 0.05; ESM Table 5) than
the KDIGO risk strata did. NRInon-event was −8.2% in the
derivation set and − 7.9% in the validation set (p =NS).

Time-to-event analyses for 40% sustained decline or
kidney failure

Patients with high-risk KidneyIntelX scores (top 15% in the
derivation set and top 17% in the validation set) had greater
risk of progression to time-to-event categorical outcomes of 40%
sustained decline or kidney failure than patients in the low- or
medium-risk strata combined did (HR 9.2; 95% CI 6.2, 13.6 in

Fig. 1 Shapley additive
explanations (SHAP) plot
showing relative feature
importance. SHAP summary
plots order features based on their
importance. Each plot is made up
of individual points from the
training dataset with a higher
value being darker purple and a
lower value being more yellow. If
the dots on one side of the middle
line are more purple or yellow,
this suggests that the values are
increasing or decreasing,
respectively, moving the
prediction in that direction. For
example, higher systolic BP is
associated with higher risk of the
composite kidney outcome. AST,
aspartate aminotransferase
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derivation and 9.1, 95%CI 5.8, 14.4 in the validation set; Fig. 3a
and b). Kaplan–Meier curves by KDIGO risk categories in the
training and validation set are shown in ESM Fig. 3.

Subgroup analysis KidneyIntelX performed similarly across
patients with an eGFR greater or less than 60 ml min−1

[1.73 m]−2 at baseline (0.78 and 0.76, respectively).
Additionally, when only data in the year prior to enrolment
were included, the AUC was identical (0.77) as was the PPV
for the top 17% (61%) and the NPV for the bottom 45%
(91%). Kaplan–Meier plots did not change when limited to
patients with data ≥5 years to ensure that patients were alive
for at least 5 years (ESM Fig. 4).

Comparison with logistic regression modelWe compared the
performance of a logistic regression model that incorporated
the top 12 final features that were trained and validated in the
KidneyIntelX random forest model. The AUC for a logistic
model with those 12 features was 0.75, and the PPV for the
top 17% of the population was 59%.

Discrimination for ‘kidney failure’ endpoint Using the same
KidneyIntelX model specifically trained for the composite
kidney endpoint, the AUC of KidneyIntelX risk scores for
the ‘kidney failure’ endpoint alone was 0.87 (95% CI 0.84,
0.89) in the derivation cohort and 0.89 (95% CI 0.87, 0.91) in
the validation cohort.
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Fig. 2 Composite kidney
endpoint event rates by (a)
KidneyIntelX predicted risk in
derivation set, (b) KidneyIntelX
predicted risk in validation set and
(c) KidneyIntelX score prediction
distributions of patients with
DKD according to the risk of
composite kidney endpoint in the
derivation and validation set. (a,
b) Events are denoted with an
orange dot (progression) and
represent the composite kidney
endpoint within 5 years. Non-
events are denoted with blue dots
(no progression) and represent an
absence of the composite kidney
event in the follow-up period. (c)
Dots represent cumulative
incidence: blue, low risk 10%
(6%, 14%); pink, intermediate
risk 22% (16%, 28%); and red,
high risk 61% (50%, 71%)
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Discussion

Utilising plasma samples of individuals with type 2 diabetes
from two biobanks and linked EHR data, we developed and
validated a risk score combining clinical data and three plasma
biomarkers via a random forest algorithm to predict a compos-
ite kidney outcome, progressive decline in kidney function,
consisting of RKFD, sustained 40% decline in eGFR, and
kidney failure over 5 years. We demonstrated that the
KidneyIntelX outperformed models that use standard clinical
variables alone, including the KDIGO risk categories [2].
There were marked improvements in discrimination over clin-
ical models, as measured by AUC, NRI and improvements in
PPV compared with KDIGO risk categories. Furthermore, we
showed that KidneyIntelX accurately identified over 40%
more patients experiencing events than the KDIGO risk strata
did. Finally, KidneyIntelX provided good risk stratification
for the accepted US Food and Drug Administration endpoint
of sustained 40% decline in eGFR or kidney failure with a 15-
fold difference in risk between the high-risk and low-risk stra-
ta for this clinical and objective endpoint.

DKD is an increasingly complex and common problem
challengingmodern healthcare systems. In real world practice,
predicting DKD progression is challenging, particularly in
early disease, so improving prognostic tests is paramount.
Our integrated risk score has near-term clinical implications,
especially when linked to clinical decision support and
embedded care pathways. The current standard for clinical
risk stratification (KDIGO risk strata) [2] has three risk strata
that overlap with the population of DKD patients that we
included in our study. We also created a risk score with three
risk strata (low, intermediate and high) incorporating KDIGO

classification components (eGFR and uACR), as well as other
clinical variables and three blood-based biomarkers. In this
way, we were able to augment the ability to accurately risk
stratify patients with DKD, thereby enabling improved patient
management.

Low-risk patients with DKD can continue care with their
existing providers and require less intense treatments, unless
repeat testing, changes in clinical status or local arrangements
regarding referral to specialist care indicate otherwise. For
those with high-risk scores, oversight may include more refer-
rals to nephrology [30, 31], increased monitoring intervals,
improved awareness of kidney health, referral to dieticians,
reinforcement of usage of antagonists of the renin angiotensin
aldosterone system, and increased motivation to start recently
approved medications, including SGLT2 inhibitors and GLP-
1 receptor agonists to slow progression [32, 33]. Earlier
engagement with nephrologists may also allow for more time
to advise and educate patients about home-based dialysis and
pre-emptive or early kidney transplant as patient-centred
kidney replacement options when appropriate. The use of a
risk score as part of the enrolment process in future RCTs may
enrich the trial participants for greater likelihood of events and
thus reduce the chances for type 2 error or minimise the
sample size needed to detect a statistically significant differ-
ence between treatment and control. Interventions that prevent
or slow DKD progression and foster patient-centred kidney
replacement modalities support the goals of the US
Department of Health and Human Services’ Advancing
American Kidney Health initiative [34].

KidneyIntelX included inputs from biomarkers examined
in several settings. These biomarkers have demonstrated reli-
able independent prognostic signals for kidney function

Table 2 Test characteristics for KidneyIntelX and the comprehensive clinical model

Predicted
risk

KidneyIntelX
risk score

Full derivation set (n=686)a Validation set (n=460)b Predicted
risk

Optimised clinical model

Population Sens Spec NPV/
PPV

Population Sens Spec NPV/
PPV

Population Sens Spec NPV/
PPV

Low risk Low risk

0.040 ≤30 Lowest
30%

96% 37% 98% Lowest
32%

88% 38% 91% 0.142 Lowest
32%

74% 33% 86%

0.061 ≤45 Lowest
45%

88% 53% 95% Lowest
46%

81% 54% 90% 0.171 Lowest
46%

67% 48% 88%

0.0712 ≤50 Lowest
50%

85% 59% 94% Lowest
48%

77% 58% 90% 0.175 Lowest
48%

67% 51% 89%

High risk

0.241 ≥85 Top 20% 56% 89% 56% Top 21% 50% 88% 55% 0.288 Top 21% 41% 82% 31%

0.302 ≥90 Top 15% 46% 93% 63% Top 17% 45% 93% 61% 0.319 Top 17% 37% 88% 37%

0.401 ≥95 Top 10% 32% 96% 67% Top 12% 31% 96% 70% 0.361 Top 12% 28% 91% 38%

aAUCs in derivation set: 0.85 (95% CI 0.84, 0.86) in train and AUC 0.77 (95% CI 0.74, 0.79) from tenfold cross-validation testing
bAUC in validation set 0.77 (95% CI 0.76, 0.79)

NPV, negative predictive value (for low risk); PPV, positive predictive value (for high risk); Sens, sensitivity; Spec, specificity
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decline and ESRD [11, 12, 15, 35–38]. In our previous study,
we found that including biomarkers to clinical data derived
from EHR at a single-centre had better predictive performance
than clinical models alone [13]. However, that study included
few patients with prevalent CKD (approximately one third
had CKD in the cohort with type 2 diabetes and one quarter
had CKD in the APOL1 high-risk cohort). In our current

study, we expanded the cohort to a second medical centre
(University of Pennsylvania), and trained and validated a
new model focused exclusively on patients with prevalent
DKD at baseline. By incorporating biomarker concentrations
and EHR data into our machine learning algorithm, we were
able to provide a multidimensional representation of risk for
individuals with DKD and allow for the model to generate

Fig. 3 Kaplan–Meier curves by
KidneyIntelX risk strata for the
endpoint of sustained 40%
decline in eGFR or kidney failure
in derivation (a) and validation
(b) sets. The risk cut-offs derived
from derivation and applied to
validation were: low risk 0–
0.061129, intermediate risk
0.061129–0.30209 and high risk
0.30209–1. In the derivation set,
45% were low risk, 40% were
intermediate risk and 15% were
high risk. In the validation set,
46% were low risk, 37% were
intermediate risk, and 17% were
high risk. The HR for high vs low
risk was 18.3 (95% CI 10.1, 33.1)
in derivation and 14.7 (95% CI
7.8, 27.6) in validation. The HR
for high vs intermediate risk was
HR 5.7 (95% CI 3.7, 8.7) in
derivation and 6.0 (95% CI 3.5,
10.0) in validation. The HR for
high vs low and intermediate risk
combined was 9.2 (95% CI 6.2,
13.6) in derivation and 9.1 (95%
CI 5.8, 14.4) in validation
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improved prognostic estimates for future progression [39, 40].
Other biomarkers (e.g., SUPAR) and composite tests that
incorporate other plasma biomarkers (apolipoprotein A-IV,
CD5 antigen-like, IGF-binding protein 3) and some clinical
data features have been shown to accurately predict incident
CKD in individuals with type 2 diabetes; however, this does
not exclude other approaches that include additional
biomarkers and novel methods of data analysis [41–43]. The
goal of the KidneyIntelX test is to determine which patients
with established DKD are at highest risk of progressive
decline in kidney function or kidney failure and those with
CKD that is unlikely to progress over time.

Our study has limitations. uACR was missing in 38% of
the cohort, but this is representative of current state of care [1,
44]. Moreover, our goal was to develop a risk score using real
world data from EHR to predict where uACR is missing in a
significant number of patients. More widespread availability
of uACR values would enhance the performance of
KidneyIntelX, as it was a contributing feature in our model.
However, even with this limitation, KidneyIntelX had a more
robust performance than the KDIGO very high-risk stratum in
the subpopulation with uACR measurements. Second, there
was no protocolised follow-up resulting in missing data and
lack of kidney biopsies. Missing data can lead to biased
machine learning models and the data are prone to
ascertainment bias [45]. However, the median number
of eGFR values per participant was 16, and the median
time of follow-up was 4.3 years. Although the primary
biobanked cohorts used in the study were broadly repre-
sentative of individuals with DKD in type 2 diabetes in
terms of race/ethnicity and gender, we cannot rule out
an inherent bias since the recruitment was opt-in recruit-
ment from outpatient clinics and individuals who chose
to participate in the cohorts from which the study popu-
lation was selected may be different from those who did
not participate in the primary cohorts. Additionally, we
did not have information on the participants’ socioeco-
nomic status or the duration of the diabetes diagnosis.
In the absence of biopsy, we could not exclude the
possibility that CKD may be due to other causes. The
test performance of KidneyIntelX (random forest algo-
rithm) was higher than a logistic regression model that
utilised the final top biomarker and clinical features that
were selected by the random forest approach. However,
we chose to employ the machine learning approach
because random forests can integrate feature selection
and modelling as well as efficiently model potential
non-linear interactions between features. Finally, both
cohorts are from Northeast USA and an independent
validation cohort is needed to ensure generalisability.
However, only one third of the participants were white,
so there was adequate representation of racial groups
that experience disparities for kidney disease.

In conclusion, a machine-learned model combining plasma
biomarkers and EHR data significantly improved prediction
of progressive decline in kidney function over comprehensive
clinical models without biomarkers in individuals with DKD
in type 2 diabetes from two large academic medical centres.
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